Полы в квартире и доме

Понятие связи по технической механике. Теоретическая механика статика. Следствия из аксиом

КУРС ЛЕКЦИЙ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

Лекция 1

Теоретическая механика - это наука о наиболее общих законах механиче­ского движения и равновесия материальных объектов.

Основные понятия и определения теоретической механики возникли на ос­новании многочисленных опытов и наблюдений над явлениями природы с по­следующим абстрагированием от конкретных условий каждого опыта. В теоре­тической механике пользуются предельными абстракциями: материальная точка и абсолютно твердое тело. Приведенные абстракции позволяют изучать самые общие законы механического движения, что и соответствует основной задаче теоретической механики. Теоретическая механика является основой для изучения таких дисциплин как сопротивление материалов и дета­ли машин.

Курс теоретической механики состоит из трех частей: статики, кинематики и динамики.

Статика – раздел теоретической механики, в котором изучается статическое равновесие материальных тел, находящихся под действием приложенных к ним сил.

Основные понятия статики:

1. Если некоторое тело не перемещается по отношению к другому телу, то говорят, что первое тело находится в состоянии относительного равнове­сия. Тело, по отношению к которому рассматривается равновесие других тел, называется телом отсчета.

2. Любое тело под действием приложенных к нему сил изменяет свои гео­метрические размеры и форму, т.е. деформируется. В теоретической ме­ханике эти деформации не учитываются и рассматриваются только недеформируемые – абсолютно твердые тела. Тело называется абсолютно твердым, если расстояние между его любыми двумя точками остается по­стоянным.

3. Мерой механического взаимодействия тел является сила. Сила – вели­чина векторная, она характеризуется точкой приложения, направлением и модулем (рис. 1.1). Единица измерения силы – нью­тон (Н).

4. Совокупность сил, действующих на какое-либо тело, называется системой сил. Обозначается сис­тема сил { , , , … } – система, состоящая из n сил.

5. Уравновешенной, или эквивалентной нулю, системой сил называется та­кая система сил, которая, будучи приложенной к твердому телу, не нару­шает его состояния. То есть, если некоторое тело не изменяло свое поло­жение относительно тела отсчета до приложения уравновешенной сис­темы сил, то оно не изменит его и после приложения к нему этой сис­темы. Обозначается уравновешенная система сил так: { , , , … }<=>0 (<=> - знак эквивалентности).

6. Если к некоторому телу приложена система сил { , , , … } и к нему прикладываем еще одну систему сил { , , , … }, такую, что вместе с первой она будет составлять уравновешенную систему сил. В этом случае систему { , , , … }называют уравновешивающей системой сил. Если уравновешивающая система состоит из одной силы , то эта сила называется уравновешивающей силой для системы сил { , , , … }.


7. Если каждая из двух систем сил { , , , … } и { , , , … } уравновешиваются одной и той же системой сил { , , , … }, то первые две системы сил эквивалентны между собой { , , , … } <=>{ , , , … }. Вывод: замена системы сил, действующей на тело, системой ей эквивалентной не изменяет состояния, в котором находится данное тело.

8. Если система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.

Аксиомы статики

Аксиома 1. Свободное абсолютно твердое тело находится в равновесии под действием двух сил, тогда и только тогда, когда силы действуют по одной прямой в противоположные стороны и имеют равные модули.

Аксиома 2. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней присоединить или от нее отбросить систему сил эквивалентную нулю.

{ , , , … } <=> { , , , … , , , , … };

{ , , , … } <=> 0


{ , } <=>

Аксиома 4. Силы взаимодействия двух тел равны по величине и направлены по одной прямой в противоположные стороны.

Тело называется свободным , если его перемещения в пространстве ничем не ограничены. Если на перемещение точек тела накладываются ограничения, то тело называется несвободным или связанным. Материальные тела, ограничивающие перемещения данного тела называются связями. Сила, с которой связь действует на данное тело, называется реакцией связи. Сила действует на связь, а реакция связи на тело.

Аксиома 5. (Аксиома освобождения от связей). Равновесие тела не нарушится, если наложенные на него связи заменить реакциями связей.

Аксиома 6. (Аксиома о затвердевании). Равновесие деформируемого тела не изменится, если на него наложить дополнительные связи или оно станет абсолютно твердым.

Следствия из аксиом

Следствие 1. Силу, приложенную к абсолютно твердому телу, можно переносить в любую точку ее линии действия. При этом действие силы на тело не изменится.

Доказательство:

Пусть на твердое тело действует сила , приложенная к точке А (рис. 1.4). Приложим в некоторой точке В линии действия силы F систему сил { , } <=> 0, что допускается на основании Аксиомы 2. Примем = = . В результате получим систему сил { , , } <=> .

Заметим, что { , } <=> 0, на основании аксиомы 2 эту систему сил можно отбросить. Получаем <=>{ , , }<=> .

Вывод: Сила является скользящим вектором.

Следствие 2. Теорема о необходимом условии равновесия тела, находящимся под действием трех непараллельных сил, лежащих в одной плоскости.

Если свободное тело находится в состоянии равновесия под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке.

Доказательство:

Пусть к телу приложены три силы , , (рис. 1.5). { , , } <=> 0. По­скольку линии действия сил непараллельны, то любые две из них (пусть и ) пересекутся в некоторой точке О . Перенесем F 1 и F 2 в точку О и заменим эти силы равнодействующей . Получим { , , } <=> { , }, а для того чтобы тело находилось в равновесии, необходимо выполнение условия: = , и они должны быть направлены по одной прямой в противоположные стороны. То есть линия действия силы должна проходить через точку пересечения линий действия сил и .

Лекция 2

Виды связей и их реакции

При решении технических задач возникает необходимость поиска реакций различных связей. Общее правило, которое следует применять, состоит в следующем: если ограничиваются перемещения какой-либо точки тела, то реакцию следует прикладывать в этой точке в сторону, противоположную направлению, в котором ограничивается перемещение.

Основные типы связей:

1. Гладкая поверхность или опора. Гладкой считается поверхность, трением о которую можно пренебречь. Реакция гладкой поверхности сводится только к реакции , направленной по общей нормали к контактирующим поверхностям, в предположении, что эта нормаль существует (рис. 2.1.а). Если общей нормали не существует, то есть одна из поверхностей имеет угловую точку или «заострение», реакция направлена по нормали к другой поверхности (рис. 2.1.б).


3. Гибкая связь. К этому типу связи относятся связи, осуществляемые с помощью цепи, троса, каната и т. д. Реакция такой связи всегда направлена вдоль связи (рис. 2.3).

4. Цилиндрический шарнир (рис. 2.4) и подшипник (опора В рис.2.5). Цилиндрическим шарниром на­зывается соединение двух или более тел по­средством цилиндрического стержня, так называемого пальца, вставленного в отверстия в этих телах. Цилиндрический шарнир препятствует перемеще­нию по любому направ­лению в плоскости ХОY. Реакция неподвижного цилиндрического шарнира (шарнирно-неподвижной опоры) представляется в виде неиз­вестных составляющих и , линии действия которых парал­лельны или совпадают с осями ко­ординат (рис. 2.4).

5. Подпятник (опора А рис. 2.5) и сферический шарнир (рис. 2.6). Та­кой вид связи можно представить в виде стержня, имеющего на конце сферическую поверхность, которая крепится в опоре, представляющей собой часть сферической полости. Сферический шарнир препятствует пере­мещению по любому направлению в пространстве, поэтому реакция его представляется в виде трех составляющих , , , параллельных соответ­ствующим координатным осям.

6.



Шарнирно-подвижная опора. Этот вид связи конструктивно выполняется в виде цилиндрического шарнира, кото­рый может свободно переме­щаться вдоль поверхности. Реакция шарнирно-подвижной опоры всегда направлена перпендикулярно опорной поверх­ности (опора А рис. 2.7).

7. Шарнирно-неподвижная опора. Реакция шарнирно-неподвиж­ной опоры представляется в виде неизвестных составляющих и , линии действия которых па­раллельны или совпадают с осями коорди­нат (опора В рис. 2.7).

8. Невесомый стержень (прямолинейный или криволинейный), закреплен­ный по концам шарнирами. Реакция такого стержня является определен­ной и направлена вдоль линии, соединяющей центры шарниров (рис. 2.8).


9. Жесткая заделка. Это необычный вид связи, так как кроме препятствия перемещению в плоскости ХОY, жесткая заделка препятствует повороту стержня (балки) относительно точки А . Поэтому реакция связи сводится не только к реакции R (R а x , R а y), но и к реактивному моменту М ра (рис. 2.9).

Все теоремы и уравнения статики выво-дятся из нескольких исходных положений, принимаемых без матема-тических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F 1 = F 2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Рис.10

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равнове-сии не может.

Аксиома 2. Действие данной си-стемы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравнове-шенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсо-лютно твердое тело не изменится, если перенести точку при-ложения силы вдоль ее линии действия в любую другую точку тела.

Рис.11

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что = , = . От этого действие силы на тело не изменится. Но силы и со-гласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В резуль-тате на тело. Будет действовать только одна сила , равная , но приложен-ная в точке В .

Таким образом, вектор, изобра-жающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю па-раллелограмма, построенного на этих силах, как на сторонах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и : = + .

Рис.12

Величина равнодействующей

Рис. 1.3.

Конечно, Такое равен-ство будет соблюдаться только при условии, что эти силы направлены по одной пря-мой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействую-щую, равную геометрической (векторной) сумме этих сил и прило-женную в той же точке.


Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но проти-воположное по направлению противодействие.

Закон о равенстве действия и противодей-ствия является одним из основных законов ме-ханики. Из него следует, что если тело А дей-ствует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой = (рис. 13). Однако силы и не образуют урав-новешенной системы сил, так как они приложены к разным телам.

Рис.13

Аксиома 5 (принцип отвердевания). Равновесие изме-няемого (деформируемого) тела, находящегося под действием дан-ной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сва-ренными друг с другом и т. д.

Связи и их реакции.

По определению, тело, которое не скреплено с другими телами и может совершать из данного положе-ния любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным . Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе - несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости , которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь - стол. Тело несвободное. Сделаем его свободным - стол уберем, а чтобы тело осталось в равнове-сии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей .

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен-дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 14,а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри-касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б ), то реакция направлена по нормали к другой поверх-ности.

Если поверхности не гладкие, надо добавить еще одну силу - силу трения , которая направлена перпендикулярно нормальной реакции в сторону, противоположную возможному скольжению тела.

Рис.14 Рис.15

Рис.16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен-ное шарниром к опоре D (рис.16,а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен-дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен-дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле-ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп-ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При-мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото-аппарат к штативу (рис.16,б ) и подшипник с упором (подпятник) (рис. 16,в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис.17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре-небречь. Тогда на стержень будут действовать только две силы при-ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко-торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А ) препятствует движению тела только в направ-лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и , то тем самым будет определена и реакция ; по модулю

Рис.18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже непо-движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой-дут четыре неизвестные реакции , , , .

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоско-стей действует система распределенных сил реакций. Считая эти силы приведен-ными к центру А

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

Тела в природе бывают свободными и несвободными. Тела, свобода перемещения которых ничем не ограничена, называются свободными. Тела, ограничивающие свободу перемещения других тел, называются по отношению к ним связями .

Одним из основных положений механики является принцип освобождаемости от связей, согласно которому несвободное тело можно рассматривать как свободное, если отбросить действующие на него связи и заменить их силами – реакциями связей.

Очень важно правильно расставить реакции связей, иначе написанные уравнения окажутся неверными. Ниже приведены примеры замены связей их реакциями. На рисунках 1.1–1.8 показаны примеры замены реакциями сил, расположенных в плоскости.


а – тело весом G на гладкой поверхности;
б – действие поверхности заменено реакцией – силой R;
в – в точке А связь «опорная точка» или ребро;
г – реакции направлены перпендикулярно
опираемой или опирающейся плоскостям

Рисунок 1.1

Реакция гладкой поверхности всегда направлена по нормали к этой поверхности (рисунок 1.1). Реакция «невесомого» троса (нити, цепи, стержня) всегда направлена вдоль троса (нити, цепи, стержня) (рисунок 1.2).

Рисунок 1.6

На рисунке 1.7, а изображена бискользящая заделка. В плоскости данная опора допускает поступательное перемещение стержня как по горизонтали, так и по вертикали, но препятствует повороту (в плоскости). Реакцией такой опоры будет момент M C (рисунок 1.7, б).

Рисунок 1.7

Консоль (глухая или жесткая заделка) не допускает никакого перемещения детали. Реакцией такой опоры являются неизвестная по величине и направлению сила R A с углом α (или X A и Y A ) и момент Μ A (рисунок 1.8).

Рисунок 1.8

На рисунках 1.9 – 1.15 показаны примеры замены сил, расположенных в пространстве, их реакциями.

Шарнирно-неподвижная опора, или сферический шарнир (рисунок 1.9, а), заменена системой сил (рисунок 1.9, б) X A , Y A и Z A , т.е. силой, неизвестной по величине и направлению.

Одним из основных понятий механики является понятие механической системы. Под механической системой понимают совокупность конечного или бесконечного числа материальных точек (или тел), взаимодействующих между собой в соответствии с третьим законом Ньютона. Отсюда следует, что движение каждой точки (или тела) системы зависит как от положения, так и от движения остальных точек рассматриваемой механической системы.

Системы различают свободные и несвободные. Система называется свободной, если все входящие в нее точки могут занимать произвольные положения и иметь произвольные скорости. В противном случае, т. е. когда материальные точки, входящие в систему, не могут занимать произвольных положений или же не могут иметь произвольных скоростей, система называется несвободной.

Примером свободной механической системы может служить солнечная система, в которой Солнце и планеты можно рассматривать как материальные тела, находящиеся под взаимным действием сил ньютонианского притяжения.

Примером несвободной системы может служить система, состоящая из точек, из которых одна или

несколько вынуждены при своем движении оставаться на каких-либо линиях или поверхностях.

С указанным делением систем на свободные и несвободные связано понятие связи.

Под связью в механике понимают условия, накладывающие ограничения на свободу перемещения точек системы. Связи могут накладывать ограничения как на положения точек, так и на их скорости. Практически связи осуществляются с помощью материальных тел или приспособлений (стержней, нитей, шарниров и т. п.).

Подобно тому как силы, действующие на точки системы, подразделяют на силы внутренние и силы внешние, так и связи, наложенные на точки системы, можно подразделить на связи внутренние и связи внешние. Под внутренними связями понимают такие связи, которые будучи наложены на точки системы, не препятствуют системе свободно перемещаться после того, как она внезапно отвердеет. Связь, не обладающая этим свойством, называется внешней. Например, если две точки твердого тела соединены между собой нерастяжимым и невесомым стержнем, то такая связь будет внутренней. Таким образом твердое тело можно рассматривать как систему, подчиненную внутренним связям. Если же одна из точек твердого тела шарнирно закреплена, то в этом случае связь будет внешней.

Система, подчиненная одним лишь внутренним связям, является свободной, так как она может перемещаться как свободное твердое тело. Если же в числе связей, наложенных на точки системы, имеются внешние связи, то система является несвободной.

Условия, ограничивающие свободу перемещения точек системы, аналитически выражаются в виде уравнений или неравенств вида.

где - время, - соответственно координаты и скорости точки системы,

отнесенные к некоторой инерциальной системе отсчета, относительно которой рассматривается движение данной системы.

Связи различают удерживающие и неудерживающие; первым соответствует знак равенства в (1.1), вторым - знак неравенства.

Удерживающие и неудерживающие связи иногда соответственно называют двухсторонними и односторонними связями. Удерживающая связь, препятствуя перемещению в одном направлении, препятствует также перемещению в противоположном направлении. Неудерживающая связь препятствует перемещению в одном направлении, но не препятствует перемещению в противоположном направлении.

Примером удерживающей связи могут служить две параллельные плоскости, между которыми происходит движение шарика. Рассматривая среднюю между ними плоскость как координатную плоскость получаем уравнение связи в виде: Если же шарик движется по горизонтальной плоскости любой момент может покинуть ее, то эта плоскость будет являться неудерживающей связью. Условие такой связи будет выражаться неравенством (или ).

Другим примером неудерживающей связи может служить нить с шариком на конце. Принимая точку подвеса нити за начало координат и считая нить нерастяжимой, можем условие этой связи записать в виде неравенства

где - координаты шарика, - длина нити.

Если в процессе движения шарика выполняется неравенство

то это означает, что нить ослаблена и шарик освободился от связи.

Если же при движении шарика выполняется равенство

то это означает, что нить натянута, и на шарик действует связь.

В зависимости от того, содержит ли уравнение связи в явном виде время или нет, связи подразделяются на нестационарные (реономные) и стационарные (склерономные).

Связи, которые накладывают ограничения только на положения точек системы, называются конечными или геометрическими; аналитически они выражаются уравнением

Здесь и в дальнейшем предполагаем связи удерживающими.

Если же связи накладывают ограничения не только на положения точек, но и на их скорости, то они называются дифференциальными или кинематическими, и их аналитическое выражение имеет вид

Связи подразделяют также на голономные и неголономные. К голономным связям относят все конечные или геометрические связи вида (1.2), т. е. все связи, которые накладывают ограничения на возможные положения точек системы. К голономным связям относятся также и дифференциальные связи, которые путем интегрирования могут быть приведены к соотношениям вида (1.2):

где - некоторые функции координат возможно, времени .

Если же дифференциальные связи вида (1.4) не могут быть путем интегрирования приведены к конечным соотношениям вида (1.2), то они называются

неголономными или неинтегрируемими. Г. Герц обратил внимание на важность различия между голономными и неголономными связями для понятия виртуального перемещения системы.

Легко видеть, что если голономные связи накладывают ограничения на возможные положения точек системы, то неголономные связи накладывают ограничения на скорости точек системы. Это следует из того, что уравнение неголономной связи (1.4) всегда может быть представлено в следующем виде:

Механические системы, подчиненные голономным связям, называются голономными системами. Если же в числе связей имеются неголономные, то системы называются неголономными.

Если на систему наложены только неголономные связи, то такая система называется сдвершенно неголономной или собственно неголономной.

Классическим примером движения неголономной системы может служить качение твердого шара по шероховатой плоскости (например, движение бильярдного шара).

Пусть твердый шар радиусом катится без скольжения по абсолютно шероховатой плоскости. Возьмем две системы координат с общим началом в центре шара С. Одна из них (система пусть движется поступательно, а вторая (система ) пусть будет жестко связана с шаром (рис. 1).

Положение шара в каждый момент времени может быть определено пятью координатами: двумя координатами центра шара (третья координата ) и тремя углами Эйлера: углом прецессии углом нутации 0 и углом собственного вращения (рис. 1). Условием связи в рассматриваемой задаче является условие касания шара с плоскостью и обращение

в нуль скорости точки А касания шара. Принимая центр шара С за полюс и обозначая его скорость через мгновенную угловую скорость вращения шара - через , а вектор-радиус, проведенный из центра шара в точку касания , - через , можем записать скорость точки А в следующем виде:

Проектируя это векторное равенство на оси координат и удовлетворяя условию связи получаем

где - составляющие вектора угловой скорости . Последнее уравнение интегрируется и дает одно уравнение связи показывающее, что центр шара С движется в плоскости, параллельной плоскости и отстоящей от нее на расстоянии, равном радиусу шара R.

Просмотр: эта статья прочитана 65709 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Техническая механика

Современное производство, определяющееся высокой механизацией и автоматизацией, предлагает использование большого количества разнообразных машин, механизмов, приборов и других устройств. Конструирование, изготовление, эксплуатация машин невозможна без знаний в области механики.

Техническая механика - дисциплина, вмещающая в себя основные механические дисциплины: теоретическую механику, сопротивление материалов, теорию машин и механизмов, детали машин и основы конструирования.

Теоретическая механика - дисциплина, которая изучает общие законы механического движения и механического взаимодействия материальных тел.

Теоретическая механика принадлежит к фундаментальным дисциплинам и создает основу многих инженерных дисциплин.

В основе теоретической механики лежат законы, называемые законами классической механики или законами Ньютона. Эти законы установлены путем обобщения результатов большого количества наблюдений и экспериментов. Справедливость их проверена многовековой практической деятельностью человека.

Статика - раздел теоретической механики. в котором изучаются силы, методы преобразования систем сил в эквивалентные и устанавливаются условия равновесия сил, приложенные к твердым телам.

Материальная точка - физическое тело определенной массы, размерами которого можно пренебречь при изучении его движения.

Система материальных точек или механическая система - это такая совокупность материальных точек, в которой положение и движение каждой точки зависят от положения и движения других точек этой системы.

Твердое тело является системой материальных точек.

Абсолютно твердое тело - тело, в котором расстояния между двумя произвольными его точками остаются неизменными. Считая тела абсолютно твердыми, не учитывают деформаций, которые возникают в реальных телах.

Сила F - величина, являющаяся мерой механического взаимодействия тел и определяющей интенсивность и направление этого взаимодействия.

Единицей измерения силы в системе СИ является ньютон (1 Н).

Как и для любого вектора, для силы можно найти проекции силы на оси координат.

Виды сил

Внутренними силами называют силы взаимодействия между точками (телами) данной системы

Внешними силами называются силы, действующие на материальные точки (тела) данной системы со стороны материальных точек (тел), не принадлежащих этой системе. Внешние силы (нагрузка) - это активные силы и реакции связи.

Нагрузки разделяются на:

  • объемные - распределенные по объему тела и приложенные к каждой ее частице (собственный вес конструкции, силы магнитного притягивания, силы инерции).
  • поверхностные - приложенные к участкам поверхности и характеризующие непосредственное контактное взаимодействие объекта с окружающими телами:
    • сосредоточенные - нагрузки, действующие по площадке, размеры которой малы сравнительно с размерами самого элемента конструкции (давление обода колеса на рельс) ;
    • распределенные - нагрузки, действующие по площадке, размеры которой не малы сравнительно с размерами самого элемента конструкции (гусеницы трактора давят на балку моста); интенсивность нагрузки, распределенной вдоль длины элемента, q Н/м.

Аксиомы статики

Аксиомы отображают свойства сил, действующих на тело.

1.Аксиома инерции (закон Галилея) .
Под действием взаимно уравновешенных сил материальная точка (тело) находится в состоянии покоя или движется равномерно и прямолинейно.

2.Аксиома равновесия двух сил .
Две силы, приложенные к твердому телу, будут уравновешенные только в случае, когда они равны по модулю и направлены вдоль одной прямой в противоположную сторону.

Вторая аксиома является условием равновесия тела под действием двух сил.

3.Аксиома добавления и отбрасывания уравновешенных сил.
Действие данной системы сил на абсолютно твердое тело не изменится, если к ней прибавить или изъять любую уравновешенную систему сил.
Следствие . Не изменяя состояние абсолютно твердого тела, силу можно переносить вдоль ее линии действия в любую точку, сохраняя неизменными ее модуль и направление. Т.е., сила, приложенная к абсолютно твердому телу, является скользящим вектором.

4. Аксиома параллелограмма сил.
Равнодействующая двух сил, которые пересекаются в одной точке, приложена в точке их сечения и определяется диагональю параллелограмма, построенного на этих силах как сторонах.

5. Аксиома действия и противодействия.
Каждому действию соответствует равное по модулю и противоположное по направлению противодействие.

6. Аксиома равновесия сил, приложенных к деформируемому телу при его затвердевании (принцип затвердевания).
Равновесие сил, приложенных к деформируемому телу (изменяемой системе), сохраняется, если тело считать затвердевшим (идеальным, неизменным).

7. Аксиома освобождения тела от связей.
Не изменяя состояния тела, любое несвободное тело, можно рассматривать как свободное, если отбросить связи, а их действие заменить реакциями.

Связи и их реакции

Свободным телом называется такое тело, которое может осуществлять произвольные перемещения в пространстве в любом направлении.

Связями называются тела, ограничивающие движение данного тела в пространстве.

Свободным телом называется тело, перемещение которого в пространстве ограниченно другими телами (связями).

Реакцией связи (опоры) называется сила, с которой связь действует на данное тело.

Реакция связи всегда направлена противоположно тому направлению, в котором связь противодействует возможному движению тела.

Активная (заданная) сила , это сила, которая характеризует действие других тел на заданное, и вызывает или может вызвать изменение его кинематического состояния.

Реактивная сила - сила, которая характеризует действие связей на данное тело.

По аксиоме об освобождении тела от связей, любое несвободное тело можно рассматривать как свободное, освободив его от связей и заменив их действие реакциями. В этом заключается принцип освобождения от связей.

Система сходящихся сил

Система сходящихся сил − это система сил, линии действия которых пересекаются в одной точке.

Система сходящихся сил эквивалентная одной силе - равнодействующей , которая равняется векторной сумме сил и приложенная в точке сечения линий их действия.

Методы определения равнодействующей системы сходящихся сил.

  1. Метод параллелограммов сил - На основании аксиомы параллелограмма сил, каждые две силы данной системы, последовательно, приводятся к одной силе − равнодействующей.
  2. Построение векторного силового многоугольника - Последовательно, параллельным переносом каждого вектора силы в конечную точку предыдущего вектора, составляется многоугольник, сторонами которого являются векторы сил системы, а замыкающей стороной − вектор равнодействующей системы сходящихся сил.

Условия равновесия системы сходящихся сил.

  1. Геометрическое условие равновесия сходящейся системы сил: для равновесия системы сходящихся сил необходимо и достаточно, чтобы векторный силовой многоугольник, построенный на этих силах, был замкнутым.
  2. Аналитические условия равновесия системы сходящихся сил: для равновесия системы сходящихся сил необходимо и достаточно, чтобы алгебраические суммы проекций всех сил на координатные оси равнялись нулю.

Язык: русский, украинский

Формат: pdf

Размер: 800 КВ

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

Похожие публикации